skip to main content


Search for: All records

Creators/Authors contains: "Yuan, Dafei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cooperativity is used by living systems to circumvent energetic and entropic barriers to yield highly efficient molecular processes. Cooperative structural transitions involve the concerted displacement of molecules in a crystalline material, as opposed to typical molecule-by-molecule nucleation and growth mechanisms which often break single crystallinity. Cooperative transitions have acquired much attention for low transition barriers, ultrafast kinetics, and structural reversibility. However, cooperative transitions are rare in molecular crystals and their origin is poorly understood. Crystals of 2-dimensional quinoidal terthiophene (2DQTT-o-B), a high-performance n-type organic semiconductor, demonstrate two distinct thermally activated phase transitions following these mechanisms. Here we show reorientation of the alkyl side chains triggers cooperative behavior, tilting the molecules like dominos. Whereas, nucleation and growth transition is coincident with increasing alkyl chain disorder and driven by forming a biradical state. We establish alkyl chain engineering as integral to rationally controlling these polymorphic behaviors for novel electronic applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Organic light-emitting transistors (OLETs) combine the light-emitting and gate-modulated electrical switching functions in a single device. Over the past two decades, progress has been made in developing new fluorescent semiconductors and device engineering to improve the properties of OLETs. In this paper, we give a brief review of the achievement and disadvantages of the present polymer-based OLETs, while highlighting the recent developments in semi-ladder polymers from our lab for new electroluminescent materials. The special folded molecular structures and unique aggregation states make these polymers suitable for exploration as OLET materials. A short conclusion is provided with a discussion on the challenges and future perspectives in this field. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    A critical issue in developing high-performance organic light-emitting transistors (OLETs) is to balance the trade-off between charge transport and light emission in a semiconducting material. Although traditional materials for organic light-emitting diodes (OLEDs) or organic field-effect transistors (OFETs) have shown modest performance in OLET devices, design strategies towards high-performance OLET materials and the crucial structure–performance relationship remain unclear. Our research effort in developing cross-conjugated weak acceptor-weak donor copolymers for luminescent properties lead us to an unintentional discovery that these copolymers form coiled foldamers with intramolecular H-aggregation, leading to their exceptional OLET properties. An impressive external quantum efficiency (EQE) of 6.9% in solution-processed multi-layer OLET devices was achieved. 
    more » « less
  5. null (Ed.)